The least mean fourth (LMF) adaptive algorithm and its family

نویسندگان

  • Eugene Walach
  • Bernard Widrow
چکیده

New steepest descent algorithms for adaptive filtering and have been devised which allow error minimization in the mean fourth and mean sixth, etc., sense. During adaptation, the weights undergo exponential relaxation toward their optimal solutions. T ime constants have been derived, and surprisingly they turn out to be proportional to the time constants that would have been obtained if the steepest descent least mean square (LMS) algorithm of Widrow and Hoff had been used. The new gradient algorithms are insignificantly more complicated to program and to compute than the LMS algorithm. Their general form is W J+l = w, t 2plqK-lx,, where W, is the present weight vector, W, + 1 is the next weight vector, r, is the present error, X, is the present input vector, u is a constant controlling stability and rate of convergence, and 2 K is the exponent of the error being minimized. Conditions have been derived for weight-vector convergence of the mean and of the variance for the new gradient algorithms. The behavior of the least mean fourth (LMF) algorithm is of special interest. In comparing this algorithm to the LMS algorithm, when both are set to have exactly the same time constants for the weight relaxation process, the LMF algorithm, under some circumstances, will have a substantially lower weight noise than the LMS algorithm. It is possible, therefore, that a min imum mean fourth error algorithm can do a better job of least squares estimation than a mean square error algorithm. This intriguing concept has implications for all forms of adaptive algorithms, whether they are based on steepest descent or otherwise.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Analytical Model for Predicting the Convergence Behavior of the Least Mean Mixed-Norm (LMMN) Algorithm

The Least Mean Mixed-Norm (LMMN) algorithm is a stochastic gradient-based algorithm whose objective is to minimum a combination of the cost functions of the Least Mean Square (LMS) and Least Mean Fourth (LMF) algorithms. This algorithm has inherited many properties and advantages of the LMS and LMF algorithms and mitigated their weaknesses in some ways. The main issue of the LMMN algorithm is t...

متن کامل

Adaptive sparse system identification using normalized least mean fourth algorithm

Normalized least mean square (NLMS) was considered as one of the classical adaptive system identification algorithms. Because most of systems are often modeled as sparse, sparse NLMS algorithm was also applied to improve identification performance by taking the advantage of system sparsity. However, identification performances of NLMS type algorithms cannot achieve high-identification performan...

متن کامل

A variable-parameter normalized mixed-norm (VPNMN) adaptive algorithm

Since both the least mean-square (LMS) and least mean-fourth (LMF) algorithms suffer individually from the problem of eigenvalue spread, so will the mixed-norm LMS-LMF algorithm. Therefore, to overcome this problem for the mixed-norm LMS-LMF, we are adopting here the same technique of normalization (normalizing with the power of the input) that was successfully used with the LMS and LMF separat...

متن کامل

Sparse least mean fourth algorithm for adaptive channel estimation in low signal-to-noise ratio region

Both least mean square (LMS) and least mean fourth (LMF) are popular adaptive algorithms with application to adaptive channel estimation. Because the wireless channel vector is often sparse, sparse LMS-based approaches have been proposed with different sparse penalties, for example, zero-attracting LMS and Lp-norm LMS. However, these proposed methods lead to suboptimal solutions in low signal-t...

متن کامل

Comparison of Stable NLMF and NLMS Algorithms for Adaptive Noise Cancellation in ECG Signal with Gaussian, Binary and Uniform Signals As Inputs

The least mean fourth (LMF) algorithm has several stability problems. Its stability depends on the variance and distribution type of the adaptive filter input, the noise variance, and the initialization of filter weights. A global solution to these stability problems was presented recently for a normalized LMF (NLMF) algorithm. The analysis is done in context of adaptive noise cancellation with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 30  شماره 

صفحات  -

تاریخ انتشار 1984